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Abstract

Monp-equilibrium is shown for a steady state in Grandmont and
Younas {19?31 and a steady state in McCallum (1984). The reason
for non-equilibrium, which i= the same in both cases, can be stated

A5 A general proposition.

1. Introduction

Srandmont and Younes (1873} have anzlyzed a model of an
exchange econcmy where the astock of money is decreased at the same
rate as tﬁe common rate of time preference, and they claim that
there is a corresponding steady-state equilibrium which is Pareto
efficient. In an sggregative model, let a steady state be defined
in term= of a con=tant stock of government bonds or. alternatively,
a conabant m—fmlzed budget deficit. MHcCallum (1984) claims
that if Ehe:ﬂiiinit take=s account of current interast payments,

i
there iz a corresponding steady-state equilibrium with neo price

inflation. The -
approbation in ??: see Woodford (1990, p. 1085) and
-Enater (1983, po = paper it will be shown that the
steady state in each €3 in fact not an equilibrium. It will
for non-equilibrium is the same in

both cases.



2. The Grandmoat-Younes Model

Azsumer that =ach trader i in an exchange economy has an
encowment of commodities given by the vector wy = (), constant in
every period 1 3 0, and he wizhes to maximize

@

Z.Bs® us(ca(t)) {2.1}

t=0_
where wu: is his utility function. ci is his consumption, and
his rate of time preference €& = (1 — 833/Bi. 0 < Bi < 1. With
fiat maneyrrequired as medivm of exchange, let M{t) = aM(t-1), O
Gl s = 1, be the stock of money in period t_. This is effected by

collecting from person i. at the beginning of %, the lump-zum

amount
<=
azlt) = Bifa — LIM{t - 1) = B4{a - 1)atM = O (2.2)

wheres M= M(-1), @1 >0 and 28: = 1. (If o= 1, the money
supply is constant; the case of interest will have o < 1.}  The

individual trader then has the budget constraint

Il <
Blecs{t] + mif{t) = pl{t)ws + ma{t-1) + a1({t} (2.3

"?hugtﬂr >0 and mi(t-1} is one’s cash holding
ffrt Gi{p(t), cs(t)) be the minimmm amount of

cash ne .__ eslE). given pi(t), &0 the transactions
GalplE)a * as(t). (2.4)

It iz azsumed €IS and homogeneous of degree



gne in .

A steady-state squilibrium iz defined by (p*, (ca™. mi™})

1£: Efea™ - wy) =05 Eme* = M: and Ffor every i, the program

[E[tjl, Eft!‘.‘, whare ofit) = c1™ and mit) = a™lgpe*, solves the

problem of maximizing T o 61% uif{c(t})) subject to

.

at+ip*s{cit) — we) + m{s) = mit-1) + ai(t) (2.5)
Fifavelp* p(t)) & m{t-1) + ai(t) (Z2.68)

and mfb) B0 amitd Do0 o e 12 B oW T

Grandmont and Younes show that a sclution for i°s maximization
problem reguires that the Lagrangs mmltipliers 11 > 0 and we =
LT agsociated with the budget constraint (2.5 and the
tranzactions comstraint (2.6) respectively. be such that

E
i = €ds + w4 35 a L2

Te see this; divide (2.5) and {(2.6) oy a*1' fo get tha steady-

state zingle-period conditions
PUolcit) - wi) = {ma™ - 8sMi(1 - al/a
-
Galp*, cf{t}} = ms*/a - 84M{(1l - a)l/a.

Suppose 1 shifts from (a®™1mi*) +to a higher (at+l(mi* + dms))
Fa g = O, and (a®*+imi™*) ie steady-state optimal_. The wmarginal
loss of wtility in period O is Asdms and the mwdiscounted

=
marginal gain in every period t =1 is Rsdmsi(l - al/o + wmadms o,
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Hecalli “het hie rats of time preference €3 = 41 - 81)/6s. the

e
11} PEE

(=)

botal digcounted net gadin is thus
- f 1=} fisg Ma a ?
f-ks + Aa t m— ——— ] dmi = o (2.8)
# (1-%He) a [1=54)

-

which gives (2.T).

Suppose &1 = & for all i There iz no steady-state

equilibrium if o < &, for (2.7) is wiolated. IF o > &,
T

Grandmont and Younes show that the steady-state sguilibrium is

Pareto inefficient. It is the third po=sibility where a = & that

Cconcarns us.

Consider the case where a = &. This implies ms = 0 1Iin
{2.7). which mean= that transaction= constraints are not binding.
Grandmont and Younes (1973, p. 159) correctly point cut that "it is
not warthwhile to decrease [cash] balances ... from (o™ mi™) *to
{at+l{mi* - dmi)} for t = 0" since, loocking at (2.8), the net
2ain would be zero. However, an individual trader is not confined
to steady-state solution= of maximizing {2Z.1}. He can choose to
draw down his cash balance to mi* - dmg in period O and revert to

>
fat+lms*) fTor + = 1. He thereby gains Adidms in period O and

logee Asdms (1 - a)87a in period I for a net gain of alsdm:. and

therefore the steady state with =i = 0 cannot be an eguilibrium.

3. The McCallum Model
This is an “aggregative __. equilibrimm model™ (HcCallum,

1984, p. 124) where p 1is now the price af the single product
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which is added to the capital stock &k if ot consumesd. The
representative individoual wishes to marximize

[n ]

£ 6% yice, me) 313
whare mz = MeS/pr is now in real terms with Me in per capita

terms. _Hiz budget constraint is

fike) + ve = ¢ + {1 + wRe)mesr — me + (1 + re)—1 bees

- - be + ke+rr — ks (3.2)
whera £ is his production function, W denotes lump—sum
transfers received net of taxes, 7wt = (Ps+i1i — Pl Pe iz the

inflation rate, r is the real rate of return on bonds given by

1+ v =1 & B=}/{1 + me} where Re = {1 - ©e)/Q: with @ the

 redeemed for one unit of money after being
d br = Be/pe where Be Z 0 is the number

i which were hald during £ - 1.

and £ (Sidrauski, 1967),

(3.3)
(3.4}
(3.5)
(3.6a)

13.6b)



1lim me+18%"Thz (1 + ne} = O s
=T

lim EevwpBe=1de = O (3.8)
_T_—u’:'_'l.
Iim E‘r.d.—li-"" I“l'-_i.::: + P i = i3 {-':'_E'l
T =iy
3
and ot F 0, mre: >0, e T 0. £ = | R e I R i S e e

Lagrange multiplier associated with the budget constraint. It is
Encwn that (3.2)-(3.9) are jointly sufficient for optimality and
{3.2)-(3.6)-are necessary. not commting the inegquality constraints

on o, m oand bo
The government”= budget identity per capita can be written as
Hers — Me + QeBiar — Be = P8 + wz) {3. 10}

where g 4= govermment purchase of cutput. Oiven the time-paths
of the policdy variables M. g and v, +the paths of all ke othar
variables are determined by (3.2)-{3.86). (3.10) and the definitions
of the terme involved. MeCallum (1984, p. 130) shows that there is

no “zerc-inflation equilibrivm in which a permanently maintained

positive deficit of ge + ve = d iz financed entirely by bond
sales.” The case that concerns ps is where the deficit is defined
as usual to include current interest payments. Ie there =&

correseponding zero-inflation eguilibriam?

MeCallom™s argument is as follows. Let Br = Be/{l + Resq)

be the issue valoe of bonds at t =m0 that (3.10) becomes
Mrez — M + Besas = Be = pufge + ve) + Re—1Be. (3.11)

]




suppose tTae Lime-pains ol M, g and v are choser =o that M
mrid g zre congiant and. Iin resl! formg the right=-hand side oFf
pad.11) e agqisl te oa constant d > 0, in which gcase

{Bea B )ipe = di (3.12)

The time-pathe of all the variables are thus determined. Consider

the possibility that one has conetant o, E and p, which
implies w =0 and m= const. Then A = comst in (3.3), and with

o T .}Tum (3:12), 7= comat in (3.68b), so [(F.12) reduces Lo
be+a - by = (1 + =id (3.13)
which gives
besr = by 4 {1 4 ritd (3.14)

and coneeguently the transversality condition (3.9) is satisfied.
since it can be gonickly checked that (3.23-{3.8) are also eatiefisd
in thiz steady =tate with a constant d, +therse would seem to be an

affirmative answer to the guestion posed.

However, the above argument restes on (3.12); which in effect
reqiires the representative individopal to boy the bonds besz > 0
forsall- € z 1. PBut the fact is that one can choose: bevi =0 at
some t 2 1 to dncrease his consumption without changing k or

m, and thsrefore such a steady state cannot be an eguilibrium.

It iz equally clear that a steady state with a comsbtant b >

0. which might seem to obtain where bix >0 and d =10, cCcannot

T
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4. Loneliuding Hemarks
We have zesn that in the Grandmont-Younes model, where money

do=s  not appsar in the traders” wtility functions baot the
transactions constraint i= satisfied as a strict inegquality, and in
the McCalltim model, where bonds are not in the utility function but
the bond nommegativity conetraint iz satisfied as a strict
inequality, gne does not have an sguilibrivm in the corresponding
steady stetes. Although the s=ttings are dissimilar, they share
one feature that accounts for non-egquilibrium which can be stated

in the form of the following:

position. Let = be = financial asset subject to a
- } - - - - - -
constrain. He = B for all L in &n infinite-horizon

dizcounted utility maximization problem. If x is neot an argument
> the utility function and the constraint is satisfied az'a sBirict

ineguality in a steady state. the latter iz not an egquilibrium.

The reason i= =imply that a financial as=zet iz he.d because it
can be exchanged at & later time for something that gives utility.
By such an exchange, utility iz higher, and therefore a steady
atate whars more of the asset is held than iz necessary cannot be

optimal hence not an eguilibrium.
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