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~ SUMMARY

This paper deais with Single-equation estiméfors in a
‘sxmultaneous system of linear stochastic equations. Under the
assumpt;ons that all predeterm1ned varlables in the model are '
exogenous and that the equation being estimated contalns two endo-
genous var;ables, the dlstrlbutlon functlon of the two-stage

least squares (2SLS) estlmator is approximated ‘up to terms

whose order of magnitude is 1 » where N ie the sample sizo.

The 28LS estimator 1s“gxpressed in terms of mutually in-
dependent bivariate normal random vectors. By applying Taylor
‘serles expans1ons to this expression, it 1s shown that the 2SLS
distribution functlon is equal to the sum of three'terms, the
first being the limiting standard normal distribution function,
‘the second a correction term whieh is. 0(7%;) and the third.al
_ remainder term which is 0(—%—) as N-> =, Tt is shown that the -

correction term is- 0(—%—) and the remainder term o( 1, ) 'es

¢

u?

-2

u-> o, where u is wha* is referred to in the llterature as the
1

concentration Earameter.

‘For fixed N, an approxlmatlon to the OLS dlstrlbutlon
functlon 1s also obta;ned up to terms- whose order of magnitude is

(—Fed as p-> -,
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1. INTRODUCTION

Two well-known single-equation estimators in a éimultaneous
system of linear stochastic eqyations are the limited-information
maximum likelihood (LiML) and the two-stage least squares (2SLS)
estimators. These two estiﬁators.are knowﬁ to be'apymptOticaliy |
normal and equiva;ént, under appropriate conditions, as the sample

size increases, ( see Anderson and Rubin (3) and Basmann (4).)

- Under the assumptions that the predetermined variables in
the model are exogenous and the equation being/eétimated is iden-
tified and contains two endogenous'variables, with both the number

of exogenous variables excluded and the number of equations in the
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model being arbitréry, Riéhardson (11) and Sawa' (12) have
derived thg exact ﬁrobability distribution of the 2SLS éstiﬁa-
tor. For more special cases for which the gxaét‘ 2SLS distribu-
tion is obtained, see Basmann (5,6), Bergstrocm (7)' and Kabe -
(8,9).,More recently, tﬁe exact probability distribution of the
LIML estimator in the case discussed by Sawa and Richardson

has also been derived, (see Mariano and Sawa (10) ).

Unfortunate;y; the expressions derived for the exact dis-

- tributions of the 2SLS and LIML .estimators are téo complicated
to provide any hasis for comparing the two estimators. Hopefully,
approximations to the distribution functions of these two estima- -
tors will provide more tractable, expressions for comparison. By
‘virtue of fhe large-sample asymptotic equivalence of the two es-
timators, the approximations must be better than that given by the

liﬁiting‘normal distribution.

For the case considered by Sawa and~Richardson,_this'paper
presents an approximation to the distribution function of .the
9

2SLS estimator up to terms whose order of hagnitqde is 1

where N is the sample size. S /B

In section 2, the 2SLS estimator is reduced to canoni-

cal form in ferms of mutually independent bivariate normal random
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vectors and in section 3, Taylor series expansions are used to
show that the 2SLS' distribution function is equal to the sum

of three terms the first being the limiting standard normal dis-
tribution function, the second a correctlon term whlch is 0(753)
and the third, a remaxnder term which is 0(—ﬁ~) as N-> =,

It is also shown in section 3 that in the approximation obtalned
‘the correctlon term is 0(——-) and the remainder term 0(——7)

u-> », where ﬁz is what has been referred to in the llterature as

the concentration parameter, ( for example, see Richardson (11) ).

As a corollary to the methods developed in section 3, an approxi-
mation to the OLS distribution function may also be obtained

for fixed N, up to terms whose order of magnitude is 0(-%—)

as p -> ». This approximation is given in section 4.

This paper makes use of certain results concerning the
Wishart distribution. If W = 2Z'Z, where 2 is a :nxp random
matrix (n 2 p) whose rows are mutually independent normal random
vectors with a common covariance matrix I, then W is said to
have a Wishart distribution of order P, with 5 degreeésof'freedoﬁ,
covariance matrix I and means sigma matrix (EZ)'(EZ). The

distribution of W isssaid to be central if  (EZ)'(EZ) = O.

Furthermore, if C is an arbitrary pPXp nonsingular
matrix and Q a symmetric idempotent nxn matrix of rank q,

then CWC' has a Wishart distribution of order lp, with n
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degrees of freedom, covarlance matrix czc’ and means sigma

matrlx C(EZ)'(EZ)C" and 2'QZ has a wlshart dlstrlbutlon of

order P> w1th q degrees of freedom, covariance matrix £ and
means sigma matrix (EZ)'Q(EZ).’ |

| Finally,;if'the means sigma matrix (EZ)'(EZ) is diagonal

with main diagonal elements® uf;-nz,..., w2, say, then there exists

2 S -4
a nxp. random matrix S such that W = $'S’ and

where D is'a pxp diagonal matrix with ui; Myseoes up as its

main d1agona1 elements. For a proof of this last statement, see

Anderson and G1rshiok (2).

2. THE"ZSLS ESTIMATOR IN CANONICAL FORM

In the case of two included endogenous variables, we may

write the‘equation.to,beAesfimated as

¥i = ¥25 +_ZIZ + u . ‘ (2.1’

-

where Y = (yl yz) is the Nx2 matrix of 1nc1uded endogenous

variables, Zl is the NxK matrlx of 1neluded predetermined

variidbles, u is the Nx1 vector of resxduals, and 8 and Y

are unknown parameters.



s

- We assume that (2.1) 'is the'first equation in a simul-
taneoes system of G(22)  1linear stochastic equations relatzng
G endogenous and K predetermlned varlables. The NxK matrix
'of predetermined varlables is denoted by Z, which is further ‘par-
titioned as (z, gz), where Z, is the Nsz matrix of pre-

~determined variables excluded from (2.1).

The reduced form eqﬁetions for the two endogenous variables

included in (2.1) are

<
"

n’ + v

zln; + zénz' »+ v | (2.2)

where the 2xK matrix .I _of reduced form coeff1c1ents is partl-
tioned as (n, n,), nl ‘being 2xK, and I, being 2xK2. v

is the Nx2 matrix of reduced form residuals.
We make the following assumptions about the model:

(1) A1 prédeterminehevariables are exogenous. |

(2) The equation to be egtimated is identified by zero- restrlctlons
on the structural coefflclents in the model. . ' ?

(3) The sample size N is greater than or equal to 6 + K.

(4) The NxK matrix 2 of exogenous variables is a matrix of
constants andiis of full rank. '

. - : :
.(8) ZEE tends to a finité-positive definite matrix as N + =,

(6) The rows of V are mutually ihdependent and identically dis-

-
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trlbuted as blvarlate normal random vectors WIth zero mean vec-

tor and pos;tlve definite covariance matrix .

It is well known that assumptlon (2) is equivalent to the
' assumptlon that 1, is of rank' 1, which in turn implies that

K, 2 1. Also, assumption (5) 1mpiies that in (2.1), Eg. = 0.

By writing the normal equations for the 2SLS estimator

; of B, it can be verified that

a 'P T :
8 ='Zz‘—*zl 7 . : (2.3)
Y2 Py, ‘ ‘
where
P = zcz'zriz'-z,(z;zl)"‘zg . L (2.)

Note yhat~-§ may also be written as the ratio between the (2,1)th
and (2,2)th elements of the 2x2 ~matrix Y'P Y.

Since by assumﬁtion (4) Z 1is of full rank, there exists
a KxK non-singular upper trlangular matrlx A such that

A'Z'ZA 1 Partltlon A as follows:

where ~»‘A_vu is K;x K, and 4,, 1s K,x K, , and~Iet



>
]

N
o

8, 42,8, (2.9

"
A.
N

[y
>

=

(]

2 )-. . . - (2.6)

Note that X'X = I, A11 and A22 are upper triangular, non-

‘singular and

P= XX}, o @.n
N .
Xzzl- o . | ] f2.8?
It caﬁ also be verified by using (2.1), (2.7) and (2.8) that
B2 8
M= (EY)'P.(EY) = <2 | .|, ‘ (2.9)
. : 18 1 '
where . ‘ ) ~ T
12 = (E y,)' P (E V) : _ |
- : yv=1o0 T
= m,23[ 1-2,(2}2 721 ] 2,10, | (2.10)

and I,, . 1is the second row of W, in (2.2).

. Now, by (2.2) and assumption (6), the N rows of Y are
mutually independent bivariate normal random vectors with common
covariance matrix I. Hence Y'P Y is a Mishart matrix of order

2, with covariance matrix I, mears sigma matrix M, and with

m K degrees of freedom.v

2



and

Then

and’

where

Let

01 021
2 ]
021 o

vIy!

-
<
. .

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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‘Note that |p}<'1 since . |9Zy'| = 1-p2>o0.

-If 'we now let

=V P Y = (ayy), - (2.1
then. A is a non-central Wishart matrix of order 2, with K,
 degrees of freedom and with covariance and means-sigma matrices

l given by (2.14) and (2.15) respectively, so that A can also

be expressed as ( see Anderson and Girschik (2) )

x5

A= ? ( x;'y;’) : © (2.18)

1 Yi
where the bivariate vectors (x y ) are mutually independent
normal w1th common covariance matrlx given by (2.14). and with -

means

) - ' (0 . O) s i=1 se e . ,m"l .
E(x*y*) = ' (2.19)
1 i ’ - (O u)’ i = m :

where m = K; and

=
"
. Q’ﬂ

(2.20)
2 T

Using (2.3), (2. 17) and (2. 18), we can express the  2SLS

estimator of 8 in terms of A as



B =8+ gl-8", E (2.21)
where
, ? xéy?
FS 321 v._1 171 .
B* = - = —L‘..—.....—.@.. . “ (2.22)
422 -3 g2 . '
ty
s .a” 1
i=1

3. APPROXIMATIONS TO THE 2SLS DISTRIBUTION FUNCTIONS

" Let ¢(x) and #(x) dénote the standard normal density
"and distribution functions evaluated at x. Let the variables

xi's and yi's‘ be such that

xR, = A¢1-pz x, +py., i=1, 2,...,m (3.1)
i , i i ‘ .
yi i [ i=1’ 2,.-o,hlf.l "
* . ‘ 3
¥; © | . (3.?)
y. tu » i= m .
1 .

The xi's‘ and y.'s are jointly mutually independent standard

normal variables and in terms of these variables,



~11-~

m - . ' e
-z yidl-o2 X toy )+ w(/1-02 x +oy )

;* ; izl

2 2
igl yi * (ym+U)
,[ n-1 ‘ '
Y1-02 - - .
- 1-¢ iﬁi xiyi+xm(Ym+u)] pu(ym+u) (3.4

m"l . .

p *
' yi+ly, +u)?

L
i=1

By (2.10), (2.205, andlassumption (5), it follows that %i tends
to a finite non-zero cbnstant as N-> =, Note that by (2.21) and
(3.3), the 2SLS distribution depends on N only through"u.'_
Also, it follows from (3.3) that

plim ( ug® - /1-p2 kmepym ) = 0.

N-> o

Since ( /1—92 xm4pym) is a standard normal réndom variate, this
implies that uﬁ* has a limiting standard normal distribution. Thus,

ug® is the normalized function of 8 whose distfibution'fnnction

*

we should try to approximate. !

m-1 +
151 *1i * *m O ").
-1 2 )2
) +(y +
i=1 yi ym y

is

’ ‘Given y,, Yoseees¥ys
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conditionally distributed as a standard normal random &ariable.

it follows from-(3.u) that

e 5 - puly_+u)
g* = p + 1-p2 = ) n s (3.5)
m- R S
I, y2+(y +u)?
151 y§+(ym+“)2 i1 Vi ’ym ¥
where 2z is a standard normal random variable independent of
y, » yz-,..., Y Define the following for m 2 1:
, ¥ = (y1 9yZ"""ym)v’ (3'6) ‘
1 ‘ .
f(y) = . ‘ (3.7)

-1 ¥ 2 2
RS
J i=1

h(y;b) = wesee—d = (=-p)| I y23(y #u)2 | +p(y +u) P, (3.8)

. -~ . /1__02 'u 1} i=1 1 m . - m » ‘
‘ y

. 1 m-1 b

h(y;b) = e §-8 1 'y2 «(R_opg)y +b ¢, : (3.9)
~ 1 u m . .

g:;; o M=l
, .

Note that for the just-identified case (K2=1), B8 =

%



T

where‘ (x* y*) 'ié hqrmal with mean (o uf and covarianée matrix
given by (2.14). Thus, the counterparté of (3.3) and (3.4) as
expressions for E*- in the just-identified case are obtained by

" deleting a;l terms which ihvolvé X1y XpseesXy 4,57 ¥ yé,..g, V-1
and writing x, y ‘in place of xm, ym‘ The corresponding expres-.

sions for (3.6)-(3.9) are obtained in the same way.

For b an arbitrary real number, let

1 -
g2 = 1. 200+ b2 | (3.10)

Then the following equalities hold:

PrCud® € b) ¢ Pr(z < h(y;b) ) ~ (3.11)
= Pr(z £ A(y;b) ) + O(l;)'as p-> e . (3.12)
4 a2
m-1 _ , ;
= Pr(z'¢ bg - B8 g y2) + o) as u» » (3.13}
L # 4=1 1 u '
| -1 - ‘
= E #(bg - es mz y2) + 0(lo) as u » o - (3.14)
Boi=1 1 u? .

13) as u » » . (3.15)

8(b) + E‘¢(b) (b2-m+1) + 0O(
, u
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(3.11)‘foliows immediately from.(3.5)'and.(3.8).'For (3.12), the
funcfion ﬁ(y;b) méy be obtained from 'h(y;b) in succeeding
steps. First delete the term ﬁifh-factor 1— from the factor of
h(y,b) in braces in (3.8). Theﬁ approxlma:e f(y) by usxng
Taylor's theorem, which is applicable if we restrict our approx1—
mation to the region’ {y lyyl =(1- e)u} for some fixed e such
that O < ¢ < 1. By multipying the expre331ons obtalned in the
first and second steps and again deletlng terms with factor 1;;
we finally get ﬁ(y;b}..ln (3.13), 2° is a standard normal taria-
ble independent of y,s Yyseses Yo 4° (3.13) folléws from (3,12)
by a stralghtforward manlpulatlon of the 1nequa11ty z s.h(y,b).
(3.14) is an immediate consequence of (3. 13) and (3.15) is obtalned
by using Taylor's theorem to expand the leadlng term in (3.14)

about b as well as to expand the expression for § about unity..

Detailed proofs of (3.12) and (3.15) are given in the appendix.

The following theorem now holds by'viftue of (2.21) and
(3.15):

Theorem 3.1. In the case of two 1ncluded endogenous

varlables in the equation being estimated, an approx1natlon to

“the ZSLS dlstrlbutlon function is given hg

Prd (8 - 8) & -2-'} = o(b) + 2 a(b)(b2-K +1) + otl) as y~ =
nwo, T 2 . u2
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where b is an arbitrary real number,

p = - c - 302
| ( 1 ),

2 - 2 : 2 2
= = g - +
w " 280 . Bcos

and -

2 1 1o )1
u pr m, 423 [I 2,(2,2,) z;] Z,m,;
’ "2 R . .

"O(N).

It can be seen from the proof given in the appendix‘that
the remainder term in the above approximation depends on the
sampie gize N only through u. Since u2 = O(N), it follows
then that the remainder term is also 0(%)‘ and the gecon& term
in the approximation, which we may call the correction term, is
O(Jéz). Thus, Theorem 3.1. gives both a large N and a large ' u

asymptotic approximation to the 2SLS distributidn.

For the just-identified case (K; = 1), we can improve
on Theorém 3.1 to be more precise concerning the remainder term
in the approximatioﬁ to the 2SLS distribution. We make use of
the fact indicated-previously, that for K, ='1, 8* is the ratio

of two correlated normal random variables, with the mean of the
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numerator being equal ?:b zero and that of the denominator being

equal to .

If l(2= 1, we get from (3.4)

L3

B* = o + f1-p2 x - py. « (3.16)
yu ’

where x and y are independent standabd normal random variables.

Hence

Pr(uB®* < b) = Pr {%‘lﬂ .s.% - p}

Pr{ Vi-p2 x-—(—l&op)y $b and ytu > O }

+*

Pr{ ,li_pz x-(—ﬁ-p)y 2 b and ytp < 0}

Pr{ /1-p2 x—(%-p)y < b}-’- R, (3.17)



-17-

where
R = Pr {J1-92 kx—(% -p)y 2Db and 'y+u < 0}
-Pr '{/1-92&-(-‘3 -p)y £b and y+u <0 }

Since both terms in the above expression for R are less than

or equai to

Pr(y+u < 0)= #(-p) i.oéu) = 1 PR
r ue%“
it follows that
1 | !
1 2
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Since Pr { /1-p2 x - (Q -p)y < b} = o(be) the following theorem
then follows from (3.17) and (3. 18)

s

Theorem 3.2. If the equation being éstimated contains two

endogenous variables, and is just-identified, then

2

. b -
r{(ﬁ - B) < m—}- #(bg) + R,

where u, w and & are as given in Theorem 3.1, and

1
J2m pedu

IR| <

5

4. APPROXIMATION TO THE OLS DISTRIBUTION FUNCTION

Within the same framework_used in this paper, it can be
shown that the OLS estimator § of _‘B may be expressed as the -
ratio between the (2,1)th and (2,2)th ele_menfs of Y'{I-ZI(Z{Z!).lz{LY
a .2x2 Wishart matrix which hags the same covariance and means |
sigma matrices, namély‘ I and M, as Y'PY, but has N—Kl' degrees

of freedom instead of K,.

Thus, except for the difference in the degrees of freedom,

the OLS estimator of B has exactly the same reduction to
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canénical form as the . 2SLS estimator. More 3pedifically; (2.21)
and (2.22) also hold for the OLS estimator with ms N-K . Also,
if We assume that the sample size N 1is fixed, we may use ihe
procedure in section 3 to obtain a large asymptotic approxi-

mation to the OLS distribution function. The result is aé given

in Theorem 3.1 with Kz replaced by N-Ki. That is,

Theorem 4.1. In the case of two endogenous variables

present in the equation to be estimateg, let B be the OLS es-

timator of B and let the sample size N be fixed. Then

Prg (B - 8) <« B— b = a(b) + Lo(b) (B2-N+K +1) + O(L) as p » =,
. umcz H 1 uz

where b is an arbitrary real number and- p, » and w . are as

given in Theorem 3.1.
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APPENDIX

For a fixed €. such that 0 < e < 1, let

Q: ={¥: Iyml < (l-e)u}.

To prove (3}12? and (3.15), we need the following’lémma:

Lemiha A.i; ‘Fok uw >0 and y ¢ Qg’,

y ~ ‘ | |
1IN CTRL.7) PR T S S I P R U N
‘ " 2u2 is1 i b 2 101 Y1

Proof. For u:> 0 and y e Q

o e ?

2 : ' . .
1+ _§E + 1 yg >2¢€2 >0 (A.1)

© M

M fe
Mg

i
and‘hencé; we can apply Taylor's theorem to expand f(y) around

zero where the argument in the expansion is 2 + = 1 y2.

u p2 i=1 74
f(y) = S
| /4 ¢y w1 7 y2
H w2 =1 i
y ‘@ '%”Zy * 2
=1-m_. 1 ¥ 2% 3{14- *)_ “m s 1 P2 (a.2)
Woo2u® i=1 xi; 81 y M u2 i=1?1 b
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. ) .2 . . ’
for some y* between O and m, 2 ¥ y2". By (A.1),
S L 'L £ B !

{1*5{‘} < e 5 and thus the .lemma follows from (A.2). Q.E.D.

Proof of (3.12). It follows from the above lemma and the
exppessions for h(y;b) and Hh(y;b) as given by (3.8) and (3.9)
that for y e Q, and >0,

l'h(g;b)~ ﬁ(g;b).' < p(y;u) (A.3)

where p(y;u),‘an_expression not depending on N except through
u, 1is a non-negative polynomial of finite degree in IymI and
, ? y2  such that

i=1 1

E p(y;g)_:,O(lz) as p-> =, (A.4)
A w2

By ‘the Mean-Value Theorem,

'¥¢ Eh(g;b)).-g{:ﬁ(y;b)] ’ < ¢(6) ’ h(g;b)-ﬁ(g;b) ‘ , (A.5)

?4‘
which implies by (A.3) ‘that

)

j( l¢fh(y;b)3-bfﬂ(y;5))l ];?do(y
Qe "' ~ i=1 i

P 4»(0)] p(y3u) 'ﬂ; aly.) . (A.6)
Q. i= i
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< ¢(0) E plysu)

z0(-1) as > o, (A.7)
u? |

~ Furthermore, for Q¢ +he complement of Q in f-space,
. e v €

i=1

‘ R m
‘}fc [eCh(y;p)1-othly;p) ]| TF decy,)
o _

A

P(QS) = 26 -(1-€)ul

20[C-e)ul - 1 . (A.8)
(1-¢)du (1-¢)?
A (I-e)/f;'ue

Ia

H

Therefore,

lpr{z < h(y;b)} -Prqz < ﬁ(y;b>} |l

g E{é[h(g;b)}-é[ﬁ(g;b)]}“" ‘ :_i‘
< Ei@[h(y;b)}-¢[ﬁ(g;b)]l_

<O0(d) as u»> =,

P uz

by (A.7) and (A.8). Q.E.D.



-23-

Proogfbg $3‘1§2;, By applying Taylor's theorem to expand
m 1 \
o[ be - :E y2 j about b, we get
i=1 l )

e[ bg - 28 M5l o2 1. pp %['b('z-n -ef mpl oo
' "‘ i=1 1 _ : H j=1 "1
+ L.;_Q.JLb(e-n - 55 21 yi] , (A.9)
) H = .
- n-1
where b* is some value between b and bg - 25 .21 yi.
. i=

‘Now, take a constant 8 such that 0 <23 <1,

Since |p| <1,
it follows that

\ .
1- 2bp + RS > 3(1-p2) + (p----lz)2 > 0
u u2 u

Thys, for all values of b and p,‘ Taglor's theorem may be used
to get’ ' ‘ ‘ | |

>

. ) L4 : \ ’
2 : 2 ‘f‘
E=14+28, ..1.’..2. + g[?.ae - 12.; ,)2 (1=b**) * | (A.20
u 2u H u v

: 2
where b** jis some yalue between 0 and 282 . b<,

H

Hence
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o™
]

-1‘+ﬁ-ﬂ+0(-'-:-) as o+ = . (A.D)

¢(1), it follows that the contribution of

",

Since max |¢'(x)|
the third term in (A.9) to Pr{z < h(y,b)} is 0of( 1) as y » =,

u N .
Thus, (3.15) follows from (3.14); (A 9) and (A 10) Q.E.D.
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